Electricity and Magnetism, Exam 2, 09/03/2018
 - with solutions -

5 questions

Write your name and student number on the answer sheet. Use of a calculator is allowed. You may make use of the provided formula sheet. The same notation is used as in the book, i.e. a bold-face \mathbf{A} is a vector, $\hat{\mathbf{x}}$ is the unit vector in the \mathbf{x}-direction, and T is a scalar.

1. 15 points. Consider three equal charges (q), a distance $d / 2$ apart.

(a) Find the electric field a distance z above the midpoint of the three equal charges.

Make use of the superposition principle. For two charges, see Example 2.1:

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{2 q z}{\left[z^{2}+(d / 2)^{2}\right]^{3 / 2}} \hat{\mathbf{z}} .
$$

Now we have to add the electric field of the third charge, which is

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{z^{2}} \hat{\mathbf{z}} .
$$

The answer is the sum of the two terms:

$$
\mathbf{E}=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{2 z}{\left[z^{2}+(d / 2)^{2}\right]^{3 / 2}}+\frac{1}{z^{2}}\right] \hat{\mathbf{z}} .
$$

(b) What is the energy required to assemble this charge configuration?

First charge requires no work to be done: $W_{1}=0$ For the second, it is equal to the potential:

$$
W_{2}=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{d / 2} .
$$

For the last charge, we have

$$
W_{3}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q^{2}}{d / 2}+\frac{q^{2}}{d}\right] .
$$

The total energy is the sum of these three:

$$
W_{\text {total }}=W_{1}+W_{2}+W_{3}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{2 q^{2}}{d / 2}+\frac{q^{2}}{d}\right]=\frac{5 q^{2}}{4 \pi \epsilon_{0} d}
$$

(c) Consider a configuration where the central charge is negative, and the two outer ones are positive. What is the total energy required to assemble this configuration?
W_{1} is still zero, W_{2} is negative:

$$
W_{2}=-\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{d / 2},
$$

and W_{3} has a positive and negative part:

$$
W_{3}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{-q^{2}}{d / 2}+\frac{q^{2}}{d}\right] .
$$

The sum of the three terms is now

$$
W_{t o t a l}=W_{1}+W_{2}+W_{3}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{-2 q^{2}}{d / 2}+\frac{q^{2}}{d}\right]=\frac{-3 q^{2}}{4 \pi \epsilon_{0} d}
$$

2. 20 points. Two spherical cavities, of radii a and b, are hollowed out from the interior of a (neutral) conducting solid sphere of radius R. At the center of each cavity a point charge is placed - call these charges q_{a} and q_{b}.

(a) Find the surface charge densities σ_{a}, σ_{b}, and σ_{R}.
(b) What is the field inside and outside the conductor?
(c) What is the field within each cavity?
(d) What is the force on q_{a} and q_{b} ? This is problem 2.39 from the book:

Problem 2.39
(a)
$\sigma_{a}=-\frac{q_{a}}{4 \pi a^{2}} ; \sigma_{b}=-\frac{q_{b}}{4 \pi b^{2}} ; \quad \sigma_{R}=\frac{q_{a}+q_{b}}{4 \pi R^{2}}$.
(b) $\mathbf{E}_{\text {out }}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{a}+q_{b}}{r^{2}} \hat{\mathbf{r}}$, where $\mathbf{r}=$ vector from center of large sphere.
(c) $\mathbf{E}_{a}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{a}}{r_{a}^{2}} \hat{\mathbf{r}}_{a}, \quad \mathbf{E}_{b}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{b}}{r_{b}^{2}} \hat{\mathbf{r}}_{b}$, where $\mathbf{r}_{a}\left(\mathbf{r}_{b}\right)$ is the vector from center of cavity $a(b)$.
(d) Zero.
(e) σ_{R} changes (but not σ_{a} or σ_{b}); $\mathbf{E}_{\text {outside }}$ changes (but not \mathbf{E}_{a} or \mathbf{E}_{b}); force on q_{a} and q_{b} still zero.
3. 15 points. Find the potential inside and outside an infinitely thin spherical shell of radius R that carries a uniform surface charge. Set the reference point at infinity.
This is Example 2.7:

Solution

From Gauss's law, the field outside is

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}},
$$

where q is the total charge on the sphere. The field inside is zero. For points outside the sphere ($r>R$),

$$
V(r)=-\int_{\mathcal{O}}^{\mathrm{r}} \mathbf{E} \cdot d \mathbf{l}=\frac{-1}{4 \pi \epsilon_{0}} \int_{\infty}^{r} \frac{q}{r^{\prime 2}} d r^{\prime}=\left.\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{\prime}}\right|_{\infty} ^{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} .
$$

To find the potential inside the sphere $(r<R)$, we must break the integral into two pieces, using in each region the field that prevails there:

$$
V(r)=\frac{-1}{4 \pi \epsilon_{0}} \int_{\infty}^{R} \frac{q}{r^{\prime 2}} d r^{\prime}-\int_{R}^{r}(0) d r^{\prime}=\left.\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{\prime}}\right|_{\infty} ^{R}+0=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R} .
$$

4. 15 points. Consider two infinite parallel planes carrying equal but opposite uniform charge densities $\pm \sigma$.

(a) Find the electric field in each of the three regions: (i) to the left of both, (ii) between them, (iii) to the right of both.
This is Example 2.6:

Solution

The left plate produces a field ($1 / 2 \epsilon_{0}$) σ, which points away from it (Fig. 2.24)to the left in region (i) and to the right in regions (ii) and (iii). The right plate, being negatively charged, produces a field $\left(1 / 2 \epsilon_{0}\right) \sigma$, which points toward it-to the right in regions (i) and (ii) and to the left in region (iii). The two fields cancel in regions (i) and (iii); they conspire in region (ii). Conclusion: The field between the plates is σ / ϵ_{0}, and points to the right; elsewhere it is zero.

FIGURE 2.23

FIGURE 2.24
(b) Find the capacitance of a similar configuration, now with finite large metal surfaces of area A held a small distance d apart.
This is Example 2.11:

Solution

If we put $+Q$ on the top and $-Q$ on the bottom, they will spread out uniformly over the two surfaces, provided the area is reasonably large and the separation small. ${ }^{13}$ The surface charge density, then, is $\sigma=Q / A$ on the top plate, and so the field, according to Ex. 2.6, is $\left(1 / \epsilon_{0}\right) Q / A$. The potential difference between the plates is therefore

$$
V=\frac{Q}{A \epsilon_{0}} d,
$$

and hence

$$
\begin{equation*}
C=\frac{A \epsilon_{0}}{d} \tag{2.54}
\end{equation*}
$$

(c) Let's say this parallel-plate capacitor with finite metal plates has $+Q$ on one plate, $-Q$ on the other. The plates are isolated so the charge Q cannot change. As the plates are pulled apart to double the distance, what happens to the voltage on the plates?
Answer: The voltage increases. This can be seen from the fact that the capacitance is proportional with $1 / d$. The capacitance is also the ratio of Q / V, and therefore V must increase to reduce C if Q is constant.
5. 10 points. Consider the arrangement of four charges $\left(q_{a}, q_{b}, q_{c}, q_{d}\right)$ as depicted on the right. They are in the y-z plane, all at a distance a from the center of the coordinate system.

(a) For $q_{a}=-2 q, q_{b}=+1 q, q_{c}=-2 q, q_{d}=+3 q$, what is (to a good approximation) the electric field at a point P , far away $(x \gg a)$ on the x -axis?
(b) Make two 2D sketches (in the x-z plane) in which you compare the electric field of a 'pure dipole' and a physical dipole. The dipoles are oriented along the z-axis, and point in the positive z-direction.

The End

