Electricity and Magnetism, Exam 2, 09/03/2018 - with solutions -

5 questions

Write your name and student number on the answer sheet. Use of a calculator is allowed. You may make use of the provided formula sheet. The same notation is used as in the book, i.e. a bold-face \mathbf{A} is a vector, $\hat{\mathbf{x}}$ is the unit vector in the x-direction, and T is a scalar.

1. 15 points. Consider three equal charges (q), a distance d/2 apart.

(a) Find the electric field a distance z above the midpoint of the three equal charges. Make use of the superposition principle. For two charges, see Example 2.1:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{2qz}{[z^2 + (d/2)^2]^{3/2}} \hat{\mathbf{z}}.$$

Now we have to add the electric field of the third charge, which is

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{z^2} \mathbf{\hat{z}}.$$

The answer is the sum of the two terms:

$$\mathbf{E} = \frac{q}{4\pi\epsilon_0} \left[\frac{2z}{[z^2 + (d/2)^2]^{3/2}} + \frac{1}{z^2} \right] \hat{\mathbf{z}}.$$

(b) What is the energy required to assemble this charge configuration? First charge requires no work to be done: $W_1 = 0$ For the second, it is equal to the potential:

$$W_2 = \frac{1}{4\pi\epsilon_0} \frac{q^2}{d/2}.$$

For the last charge, we have

$$W_3 = \frac{1}{4\pi\epsilon_0} [\frac{q^2}{d/2} + \frac{q^2}{d}].$$

The total energy is the sum of these three:

$$W_{total} = W_1 + W_2 + W_3 = \frac{1}{4\pi\epsilon_0} \left[\frac{2q^2}{d/2} + \frac{q^2}{d}\right] = \frac{5q^2}{4\pi\epsilon_0 d}$$

(c) Consider a configuration where the central charge is negative, and the two outer ones are positive. What is the total energy required to assemble this configuration? W₁ is still zero, W₂ is negative:

$$W_2 = -\frac{1}{4\pi\epsilon_0} \frac{q^2}{d/2},$$

and W_3 has a positive and negative part:

$$W_3 = \frac{1}{4\pi\epsilon_0} \left[\frac{-q^2}{d/2} + \frac{q^2}{d}\right].$$

The sum of the three terms is now

$$W_{total} = W_1 + W_2 + W_3 = \frac{1}{4\pi\epsilon_0} \left[\frac{-2q^2}{d/2} + \frac{q^2}{d}\right] = \frac{-3q^2}{4\pi\epsilon_0 d}$$

2. 20 points. Two spherical cavities, of radii a and b, are hollowed out from the interior of a (neutral) conducting solid sphere of radius R. At the center of each cavity a point charge is placed - call these charges q_a and q_b .

- (a) Find the surface charge densities σ_a , σ_b , and σ_R .
- (b) What is the field inside and outside the conductor?
- (c) What is the field within each cavity?
- (d) What is the force on q_a and q_b ? This is problem 2.39 from the book:

Problem 2.39
(a)
$$\sigma_a = -\frac{q_a}{4\pi a^2}$$
; $\sigma_b = -\frac{q_b}{4\pi b^2}$; $\sigma_R = \frac{q_a + q_b}{4\pi R^2}$.
(b) $\mathbf{E}_{out} = \frac{1}{4\pi\epsilon_0} \frac{q_a + q_b}{r^2} \hat{\mathbf{r}}$, where \mathbf{r} = vector from center of large sphere.
(c) $\mathbf{E}_a = \frac{1}{4\pi\epsilon_0} \frac{q_a}{r_a^2} \hat{\mathbf{r}}_a$, $\mathbf{E}_b = \frac{1}{4\pi\epsilon_0} \frac{q_b}{r_b^2} \hat{\mathbf{r}}_b$, where \mathbf{r}_a (\mathbf{r}_b) is the vector from center of cavity a (b).
(d) Zero.
(e) σ_R changes (but not σ_a or σ_b); $\mathbf{E}_{outside}$ changes (but not \mathbf{E}_a or \mathbf{E}_b); force on q_a and q_b still zero.

3. 15 points. Find the potential inside and outside an infinitely thin spherical shell of radius R that carries a uniform surface charge. Set the reference point at infinity. This is Example 2.7:

Solution

From Gauss's law, the field outside is

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \mathbf{\hat{r}},$$

where q is the total charge on the sphere. The field inside is zero. For points outside the sphere (r > R),

$$V(r) = -\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l} = \frac{-1}{4\pi\epsilon_0} \int_{\infty}^{r} \frac{q}{r'^2} dr' = \left. \frac{1}{4\pi\epsilon_0} \frac{q}{r'} \right|_{\infty}^{r} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}.$$

To find the potential inside the sphere (r < R), we must break the integral into two pieces, using in each region the field that prevails there:

$$V(r) = \frac{-1}{4\pi\epsilon_0} \int_{\infty}^{R} \frac{q}{r'^2} dr' - \int_{R}^{r} (0) dr' = \left. \frac{1}{4\pi\epsilon_0} \frac{q}{r'} \right|_{\infty}^{R} + 0 = \frac{1}{4\pi\epsilon_0} \frac{q}{R}.$$

4. 15 points. Consider two infinite parallel planes carrying equal but opposite uniform charge densities $\pm \sigma$.

(a) Find the electric field in each of the three regions: (i) to the left of both, (ii) between them, (iii) to the right of both.

This is Example 2.6:

Solution

The left plate produces a field $(1/2\epsilon_0)\sigma$, which points away from it (Fig. 2.24) to the left in region (i) and to the right in regions (ii) and (iii). The right plate, being negatively charged, produces a field $(1/2\epsilon_0)\sigma$, which points *toward* it—to the right in regions (i) and (ii) and to the left in region (iii). The two fields cancel in regions (i) and (iii); they conspire in region (ii). *Conclusion:* The field between the plates is σ/ϵ_0 , and points to the right; elsewhere it is zero.

(b) Find the capacitance of a similar configuration, now with finite large metal surfaces of area A held a small distance d apart.

This is Example 2.11:

Solution

If we put +Q on the top and -Q on the bottom, they will spread out uniformly over the two surfaces, provided the area is reasonably large and the separation small.¹³ The surface charge density, then, is $\sigma = Q/A$ on the top plate, and so the field, according to Ex. 2.6, is $(1/\epsilon_0)Q/A$. The potential difference between the plates is therefore

 $V = \frac{Q}{A\epsilon_0}d,$

and hence

$$C = \frac{A\epsilon_0}{d}.$$
 (2.54)

(c) Let's say this parallel-plate capacitor with finite metal plates has +Q on one plate, -Q on the other. The plates are isolated so the charge Q cannot change. As the plates are pulled apart to double the distance, what happens to the voltage on the plates?

Answer: The voltage increases. This can be seen from the fact that the capacitance is proportional with 1/d. The capacitance is also the ratio of Q/V, and therefore V must increase to reduce C if Q is constant.

5. 10 points. Consider the arrangement of four charges (q_a, q_b, q_c, q_d) as depicted on the right. They are in the y-z plane, all at a distance a from the center of the coordinate system.

- (a) For $q_a = -2q$, $q_b = +1q$, $q_c = -2q$, $q_d = +3q$, what is (to a good approximation) the electric field at a point P, far away $(x \gg a)$ on the x-axis?
- (b) Make two 2D sketches (in the x-z plane) in which you compare the electric field of a 'pure dipole' and a physical dipole. The dipoles are oriented along the z-axis, and point in the positive z-direction.

The End